skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anqi Zhang, Kang Yong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multicellular biological systems, most notably living neural networks, exhibit highly complex physical organization properties that pose challenges for building cell-specific and biocompatible interfaces. We developed a novel approach to genetically program cells to chemically assemble artificial structures that modify the electrical properties of neurons in situ, opening up the possibility of minimally-invasive cell-specific interfaces with neural circuits in living animals. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed material. Here, we report a method with significantly improved molecular construct properties, which expresses highly localized enzymes targeted to the plasma membrane of primary neurons with minimal intracellular retention. Polymers synthesized in situ by this approach form dense clusters on the targeted cell membrane, and neurons remain viable after polymerization. This platform can be readily extended to incorporate a broad range of materials onto the surface membranes of specific cells within complex tissues, using chemistry that may further enable the next generation of interfaces with living biological systems. 
    more » « less